Thursday, January 17, 2019

SHRINKAGE

SHRINKAGE


Castings shrink when they cool. Like nearly all materials, metals are less dense as a liquid than a solid. During solidification (freezing), the metal density dramatically increases. This results in a volume decrease for the metal in a mold.

 Solidification shrinkage is the term used for this contraction. Cooling from the freezing temperature to room temperature also involves a contraction. The easiest way to explain this contraction is that is the reverse of thermal expansion. Compensation for this natural phenomenon must be considered in two ways.


Solidification shrinkage 
The shrinkage caused by solidification can leave cavities in a 
casting, weakening it. Risers provide additional material to the casting as it solidifies. The riser (sometimes called a "feeder") is designed to solidify later than the part of the casting to which it is attached. Thus the liquid metal in the riser will flow into the solidifying casting and feed it until the casting is completely solid.

 In the riser itself there will be a cavity showing where the metal was fed. Risers add cost because some of their material must be removed, by cutting away from the casting which will be shipped to the customer. They are often necessary to produce parts which are free of internal shrinkage voids. One method that assists in keeping the metal molten in the riser longer is the utilisation of an exothermic sleeve.

Sometimes, to promote 
directional solidification, chills must be used in the mold. A chill is any material which will conduct heat away from the casting more rapidly that the material used for molding. Thus if silica sand is used for molding, a chill may be made of copperironaluminum, graphite, zircon sand, chromite or any other material with the ability to remove heat faster locally from the casting.

 All castings solidify with progressive solidification but in some designs a chill is used to control the rate and sequence of solidification of the casting.


Patternmaker's shrink (thermalcontraction) 
Shrinkage after solidification can be dealt with by using an oversized 
patterndesigned for the relevant alloy. Pattern makers use special "contraction rulers" (also called "shrink rules") to make the patterns used by the foundry to make castings to the design size required. These rulers are 1 - 6% oversize, depending on the material to be cast.

 These rulers are mainly referred to by their actual changes to the size. For example a 1/100 ruler would add 1 mm to 100 mm if measured by a "standard ruler" (hence being called a 1/100 contraction ruler). Using such a ruler during pattern making will ensure an oversize pattern. Thus, the mold is larger also, and when the molten metal solidifies it will shrink and the casting will be the size required by the design, if measured by a standard ruler.

 A pattern made to match an existing part would be made as follows: First, the existing part would be measured using a standard ruler, then when constructing the pattern, the pattern maker would use a contraction ruler, ensuring that the casting would contract to the correct size.


No comments:

Post a Comment